Что значит атф

Строение АТФ и биологическая роль. Функции АТФ

Что значит атф

В любой клетке нашего организма протекают миллионы биохимических реакций. Они катализируются множеством ферментов, которые зачастую требуют затрат энергии. Где же клетка ее берет? На этот вопрос можно ответить, если рассмотреть строение молекулы АТФ – одного из основных источников энергии.

Атф – универсальный источник энергии

АТФ расшифровывается как аденозинтрифосфат, или аденозинтрифосфорная кислота. Вещество является одним из двух наиболее важных источников энергии в любой клетке. Строение АТФ и биологическая роль тесно связаны.

Большинство биохимических реакций может протекать только при участии молекул вещества, особенно это касается пластического обмена.

Однако АТФ редко непосредственно участвует в реакции: для протекания любого процесса нужна энергия, заключенная именно в химических связях аденозинтрифосфата.

Строение молекул вещества таково, что образующиеся связи между фосфатными группами несут огромное количество энергии. Поэтому такие связи также называются макроэргическими, или макроэнергетическими (макро=много, большое количество). Термин макроэргические связи впервые ввел ученый Ф. Липман, и он же предложил использовать значок ̴ для их обозначения.

Очень важно для клетки поддерживать постоянный уровень содержания аденозинтрифосфата. Особенно это характерно для клеток мышечной ткани и нервных волокон, потому что они наиболее энергозависимы и для выполнения своих функций нуждаются в высоком содержании аденозинтрифосфата.

Строение молекулы АТФ

Аденозинтрифосфат состоит из трех элементов: рибозы, аденина и остатков фосфорной кислоты.

Рибоза – углевод, который относится к группе пентоз. Это значит, что в составе рибозы 5 атомов углерода, которые заключены в цикл. Рибоза соединяется с аденином β-N-гликозидной связь на 1-ом атоме углерода. Также к пентозе присоединяются остатки фосфорной кислоты на 5-ом атоме углерода.

Аденин – азотистое основание. В зависимости от того, какое азотистое основание присоединяется к рибозе, выделяют также ГТФ (гуанозинтрифосфат), ТТФ (тимидинтрифосфат), ЦТФ (цитидинтрифосфат) и УТФ (уридинтрифосфат). Все эти вещества схожи по строению с аденозинтрифосфатом и выполняют примерно такие же функции, однако они встречаются в клетке намного реже.

Остатки фосфорной кислоты. К рибозе может присоединиться максимально три остатка фосфорной кислоты. Если их два или только один, то соответственно вещество называется АДФ (дифосфат) или АМФ (монофосфат).

Именно между фосфорными остатками заключены макроэнергетические связи, после разрыва которых высвобождается от 40 до 60 кДж энергии. Если разрываются две связи, выделяется 80, реже – 120 кДж энергии.

При разрыве связи между рибозой и фосфорным остатком выделяется всего лишь 13,8 кДж, поэтому в молекуле трифосфата только две макроэргические связи (Р ̴ Р ̴ Р), а в молекуле АДФ – одна (Р ̴ Р).

Вот каковы особенности строения АТФ. По причине того, что между остатками фосфорной кислоты образуется макроэнергетическая связь, строение и функции АТФ связаны между собой.

Строение АТФ и биологическая роль молекулы. Дополнительные функции аденозинтрифосфата

Кроме энергетической, АТФ может выполнять множество других функций в клетке. Наряду с другими нуклеотидтрифосфатами трифосфат участвует в построении нуклеиновый кислот. В этом случае АТФ, ГТФ, ТТФ, ЦТФ и УТФ являются поставщиками азотистых оснований. Это свойство используется в процессах репликации ДНК и транскрипции.

Также АТФ необходим для работы ионных каналов. Например, Na-K канал выкачивает 3 молекулы натрия из клетки и вкачивает 2 молекулы калия в клетку. Такой ток ионов нужен для поддержания положительного заряда на наружной поверхности мембраны, и только с помощью аденозинтрифосфата канал может функционировать. То же касается протонных и кальциевых каналов.

АТФ является предшественником вторичного мессенжера цАМФ (циклический аденозинмонофосфат) – цАМФ не только передает сигнал, полученный рецепторами мембраны клетки, но и является аллостерическим эффектором.

Аллостерические эффекторы – это вещества, которые ускоряют или замедляют ферментативные реакции.

Так, циклический аденозинтрифосфат ингибирует синтез фермента, который катализирует расщепление лактозы в клетках бактерии.

Сама молекула аденозинтрифосфата также может быть аллостерическим эффектором. Причем в подобных процессах антагонистом АТФ выступает АДФ: если трифосфат ускоряет реакцию, то дифосфат затормаживает, и наоборот. Таковы функции и строение АТФ.

Как образуется АТФ в клетке

Функции и строение АТФ таковы, что молекулы вещества быстро используются и разрушаются. Поэтому синтез трифосфата – это важный процесс образования энергии в клетке.

Выделяют три наиболее важных способа синтеза аденозинтрифосфата:

1. Субстратное фосфорилирование.

2. Окислительное фосфорилирование.

3. Фотофосфорилирование.

Субстратное фосфорилирование основано на множественных реакциях, протекающих в цитоплазме клетки. Эти реакции получили название гликолиза – анаэробный этап аэробного дыхания. В результате 1 цикла гликолиза из 1 молекулы глюкозы синтезируется две молекулы пировиноградной кислоты, которые дальше используются для получения энергии, и также синтезируются два АТФ.

  • С6Н12О6 + 2АДФ + 2Фн ––> 2С3Н4O3 + 2АТФ + 4Н.

Окислительное фосфорилирование. Дыхание клетки

Окислительное фосфорилирование – это образование аденозинтрифосфата путем передачи электронов по электронно-транспортной цепи мембраны. В результате такой передачи формируется градиент протонов на одной из сторон мембраны и с помощью белкового интегрального комплекта АТФ-синтазы идет построение молекул. Процесс протекает на мембране митохондрий.

Последовательность стадий гликолиза и окислительного фосфорилирования в митохондриях составляет общий процесс под названием дыхание. После полного цикла из 1 молекулы глюкозы в клетке образуется 36 молекул АТФ.

Фотофосфорилирование

Процесс фотофосфорилирования – это то же окислительное фосфорилирование лишь с одним отличием: реакции фотофосфорилирования протекают в хлоропластах клетки под действием света. АТФ образуется во время световой стадии фотосинтеза – основного процесса получения энергии у зеленых растений, водорослей и некоторых бактерий.

В процессе фотосинтеза все по той же электронно-транспортной цепи проходят электроны, в результате чего формируется протонный градиент. Концентрация протонов на одной из сторон мембраны является источником синтеза АТФ. Сборка молекул осуществляется посредством фермента АТФ-синтазы.

Интересные факты об АТФ

– В среднестатистической клетке содержится 0,04% аденозинтрифосфата от всей массы. Однако самое большое значение наблюдается в мышечных клетках: 0,2-0,5%.

– В клетке около 1 млрд молекул АТФ.

– Каждая молекула живет не больше 1 минуты.

– Одна молекула аденозинтрифосфата обновляется в день 2000-3000 раз.

– В сумме за сутки организм человека синтезирует 40 кг аденозинтрифосфата, и в каждый момент времени запас АТФ составляет 250 г.

Заключение

Строение АТФ и биологическая роль его молекул тесно связаны. Вещество играет ключевую роль в процессах жизнедеятельности, ведь в макроэргических связях между фосфатными остатками содержится огромное количество энергии.

Аденозинтрифосфат выполняет множество функций в клетке, и поэтому важно поддерживать постоянную концентрацию вещества. Распад и синтез идут с большой скоростью, т. к. энергия связей постоянно используется в биохимических реакциях. Это незаменимое вещество любой клетки организма.

Вот, пожалуй, и все, что можно сказать о том, какое строение имеет АТФ.

Источник: https://FB.ru/article/227383/stroenie-atf-i-biologicheskaya-rol-funktsii-atf

Молекула АТФ — какова её роль в организме человека и каковы особенности формирования АТФ в организме

Что значит атф

АТФ — это сокращённое название Аденозин Три-Фосфорной кислоты. А также можно встретить название Аденозинтрифосфат. Это нуклеоид, который играет огромную роль в обмене энергией в организме.

Аденозин Три-Фосфорная кислота — это универсальный источник энергии, участвующий во всех биохимических процессах организма. Открыта эта молекула была в 1929 году учёным Карлом Ломанном.

А значимость ее была подтверждена Фрицем Липманом в 1941 году.

Структура и формула АТФ

Если говорить об АТФ более подробно, то это молекула, которая даёт энергию всем процессам, происходящим в организме, в том числе она же даёт энергию для движения. При расщеплении молекулы АТФ происходит сокращение мышечного волокна, вследствие чего выделяется энергия, позволяющая произойти сокращению. Синтезируется Аденозинтрифосфат из инозина — в живом организме.

Для того чтобы дать организму энергию Аденозинтрифосфату необходимо пройти несколько этапов. Вначале отделяется один из фосфатов — с помощью специального коэнзима. Каждый из фосфатов даёт десять калорий. В процессе вырабатывается энергия и получается АДФ (аденозин дифосфат).

Если организму для действия нужно больше энергии, то отделяется ещё один фосфат. Тогда формируется АМФ (аденозин монофосфат). Главный источник для выработки Аденозинтрифосфата — это глюкоза, в клетке она расщепляется на пируват и цитозол. Аденозинтрифосфат насыщает энергией длинные волокна, которые содержат протеин — миозин. Именно он формирует мышечные клетки.

В моменты, когда организм отдыхает, цепочка идёт в обратную сторону, т. е. формируется Аденозин Три-Фосфорная кислота. Опять же в этих целях используется глюкоза. Созданные молекулы Аденозинтрифосфата будут вновь использоваться, как только это станет необходимо. Когда энергия не нужна, она сохраняется в организме и высвобождается как только это потребуется.

Молекула АТФ состоит из нескольких, а точнее, трёх компонентов:

  1. Рибоза — это пятиуглеродный сахар, такой же лежит в основе ДНК.
  2. Аденин — это объединённые атомы азота и углерода.
  3. Трифосфат.

В самом центре молекулы Аденозинтрифосфата находится молекула рибозы, а её край является основной для аденозина. С другой стороны рибозы расположена цепочка из трёх фосфатов.

При этом нужно понимать, что запасов АТФ будет достаточно только первые две или три секунды двигательной активности, после чего её уровень снижается. Но при этом работа мышц может осуществляться только с помощью АТФ. Благодаря специальным системам в организме постоянно синтезируются новые молекулы АТФ. Включение новых молекул происходит в зависимости от длительности нагрузки.

Молекулы АТФ синтезируют три основные биохимические системы:

  1. Фосфагенная система (креатин-фосфат).
  2. Система гликогена и молочной кислоты.
  3. Аэробное дыхание.

Рассмотрим каждую из них в отдельности.

Фосфагенная система — в случае если мышцы будут работать недолго, но крайне интенсивно (порядка 10 секунд), будет использоваться фосфагенная система. В этом случае АДФ связывается с креатин фосфатом.

Благодаря этой системе происходит постоянная циркуляция небольшого количества Аденозинтрифосфата в мышечных клетках. Так как в самих мышечных клетках тоже имеется фосфат креатина, он используется, чтобы восстановить уровень АТФ после высокоинтенсивной короткой работы.

Но уже секунд через десять уровень креатин фосфата начинает снижаться — такой энергии хватает на короткий забег или интенсивную силовую нагрузку в бодибилдинге.

Гликоген и молочная кислота — снабжает энергией организм медленнее, чем предыдущая. Она синтезирует АТФ, которой может хватить на полторы минуты интенсивной работы. В процессе глюкоза в мышечных клетках формируется в молочную кислоту за счёт анаэробного метаболизма.

Так как в анаэробном состоянии кислород организмом не используется, то данная система даёт энергию так же как и в аэробной системе, но время экономится. В анаэробном режиме мышцы сокращаются крайне мощно и быстро.

Такая система может позволить пробежать четыреста метров спринта или более длительную интенсивную тренировку в зале.

Но долгое время работать таким образом не позволит болезненность в мышцах, которая появляется из-за переизбытка молочной кислоты.

Аэробное дыхание — эта система включается, если тренировка продолжается более двух минут. Тогда мышцы начинают получать Аденозинтрифосфат из углеводов, жиров и протеинов.

В этом случае АТФ синтезируется медленно, зато энергии хватает надолго — физическая активность может продолжаться несколько часов.

Это происходит благодаря тому, что глюкоза распадается без препятствий, у неё нет никаких противодействий, препятствующих со стороны — как препятствует молочная кислота в анаэробном процессе.

Роль АТФ в организме

Из предыдущего описания понятно, что основная роль аденозинтрифосфата в организме — это обеспечение энергией всех многочисленных биохимических процессов и реакций в организме. Большинство энергозатратных процессов у живых существ происходят благодаря АТФ.

Но помимо этой главной функции, аденозинтрифосфат выполняет и другие:

  1. Играет важную роль, являясь исходным продуктом, в синтезе нуклеиновых кислот.
  2. Регулирует различные биохимические процессы.
  3. Аденозинтрифосфат — предшественник синтеза циклического аденозинмонофосфата (посредника передачи гормонального сигнала в клетку).
  4. Является медиатором в синапсах.

Роль АТФ в организме и жизни человека хорошо известна не только учёным, но и многим спортсменам и бодибилдерам, так как её понимание помогает сделать тренировки более эффективными и правильно рассчитывать нагрузки.

Для людей, которые занимаются силовыми тренировками в зале, спринтерскими забегами и другими видами спорта, очень важно понимать, какие упражнения требуется выполнять в тот или иной момент времени.

Благодаря этому можно сформировать желаемое строение тела, проработать мышечную структуру, снизить излишний вес и добиться других желаемых результатов.

Источник: https://sportbookmaker.ru/meditsina/molekula-atf-chto-eto-i-kakova-eyo-rol-v-organizme.html

АТФ: как образуется энергия в организме человека

Что значит атф

Все биологические процессы в тканях и клетках живых существ — обменные, выделительные, двигательные, делительные и другие происходят за счет энергии, которая синтезируется в организме. Но откуда берется эта энергия и как ее еще можно использовать?

Что такое АТФФанаты кинотрилогии «Матрица», созданной американскими режиссерами, сценаристами и продюсерами Вачовски, наверняка помнят сцену в первом фильме, когда герой Морфеус показывает Нео батарейку и объясняет, что все, что нужно матрице и ее программам от людей — это их аккумулированная внутри биоэлектрическая энергия.

Данное заявление далее почти никак не объясняется и не обыгрывается, но авторы детально и скрупулезно проработали всю идеологию своей фантастической истории, и этот важный, можно сказать, ключевой вопрос, тоже не лишен своей логики.

Энергия клеток человека поистине уникальна — можно подумать, что она берется из ниоткуда и на ее основе осуществляются тысячи сложных биохимических процессов, причем одновременно.

И хотя вся эта биоэлектрическая мощь нужна самому телу, чтобы функционировать, теоретически такая энергия действительно могла бы питать большое количество технических приборов, если бы ее можно было перевести в обычный ток в бытовом его понимании.

Еще в 1929 году группа ученых из Гарвардской медицинской школы открыла химическое вещество аденозинтрифосфорную кислоту — АТФ — универсальный источник энергии для всех биохимических процессов, протекающих в любых живых системах.

Чуть позже, также американские биохимики установили, что именно АТФ является основным переносчиком энергии в живой клетке. То есть все, что клетка делает — дышит, делится, развивается, — она осуществляет за счет этого вещества.

Аденозинтрифосфат — это молекула, которая состоит из пятиуглеродного сахара — рибозы, соединения атома углерода с азотом и трифосфатом, который обычным людям более известен как солевой пищевой стабилизатор.

Что же представляет собой этот живой биохимический сгусток энергии? Фактически это — в молекулярном размере сахар, протеин, молочная кислота, соли и кислород — все то, без чего любое существо, в том числе и человек, не способно жить.

Как работает АТФЧеловек употребляет продукты питания и в его организм поступают различные вещества, но главное — жирные кислоты и глюкоза. Они проходят многочисленные циклы расщепления, которые тесно связаны с дыханием. Во многом благодаря им из молекулы кислорода выделяются ионы водорода, которые по своей сути являются протонами.

Представим себе, что живой организм специально создает пока еще «пустые батарейки» — клетки синтазы специально для последующего наполнения их энергией. Положительные заряды, взаимодействуя внутри клетки синтазы с другими микровеществами, создают электрический потенциал в ее мембране.

Исследование, как все это точно происходит, еще в прошлом веке осуществил английский биохимик, член Лондонского королевского общества Питер Митчелл. За открытие хемоосмотического механизма синтеза АТФ путем транспорта протонов в 1978 году он получил Нобелевскую премию по химии.

Этот принцип приблизительно выглядит так: протоны быстро движутся по специальным каналам клеточной мембраны синтазы, внутри которой расположен некий биологический вид молекулярноскопического ротора. Несущиеся протоны, словно река, раскручивают маховики этого ротора со скоростью 300 оборотов в секунду.

Это сопоставимо с работой двигателя болида «Формулы-1» на максимальных оборотах.

Только так действует одна клетка синтазы АТФ, а сколько их в организме человека? В 1997 году английский химик Джон Уокер и его американский коллега, Член Национальной академии наук США Пол Бойер достоверно описали механику работы синтазы АТФ, за что и получили Нобелевскую премию на двоих.

Эта круглая молекула во время синтеза аденозинтрифосфорной кислоты за счет потока ионов водорода, вырывающихся наружу, вращается и «захватывает» необходимые ей в межклеточном пространстве разные микробиологические «детали». Поэтому синтаза и действует эффективно и мгновенно — за каждый свой оборот, то есть за одну секунду, она «выпускает» три готовых молекулы АТФ. А сколько секунд в сутках? Если умножить, получается, что ежедневно в человеческом теле вырабатывается примерно 50 кг АТФ. Только зачем нам так много?

Можно ли использовать АТФ в других целях

Ученые выяснили, что обычных запасов АТФ, которые может в себе скапливать человеческий организм, хватает только на первые 2—3 секунды практически любой двигательной активности. Однако мышцы могут работать только при наличии этого аденозинтрифосфата.

Поэтому в теле человека специальные биологические системы, состоящие из цепочек-колоний синтазы АТФ, постоянно генерируют новые ее молекулы и даже могут работать медленнее или быстрее в зависимости от продолжительности физической нагрузки.

Поэтому, чисто теоретически, метаболизм данной энергии, так необходимой мышцам, можно использовать для увеличения силы и мощности в спорте. Если ученые выяснили, как биохимически синтезируется энергия в организме человека на клеточном уровне, то создать ее в чистом виде должны наверняка.

И действительно, цикл получения аденозинтрифосфорной кислоты в лабораторных условиях на данный момент описан во многих научных трудах по биохимии и физиологии человека. Однако такая прямая активация мышечной работы за счет дополнительного введения в организм раствора АТФ наталкивается на ряд различных препятствий.

Во-первых, существует запрет Международного антидопингового агентства на применение инъекционной формы АТФ.

А во-вторых, многие исследователи опытным путем уже установили, что фармакологически дозировка ампульного раствора АТФ настолько мала, что не оказывает действительно значительного влияния на метаболические процессы в организме человека.

Пока медики некоторых стран пытаются использовать фармакокинетические возможности АТФ в лечении тяжелых кардиологических и онкологических заболеваний на клеточном уровне, но с переменным успехом. Ученые еще не догадались, как из аденозинтрифосфорной кислоты сделать биологически активную «батарейку», способную «заряжать» человеческие тела или другие устройства. Но идея «Матрицы» все равно витает в воздухе, и возможно, что очень скоро биоэлектрическая энергия на основе АТФ будет использоваться в каких-нибудь невероятных проектах по оживлению или питанию роботизированных существ.

Читать ещё •••

дня. Светлана Бондарчук устроила девичник перед свадьбой

Источник: https://news.rambler.ru/other/44380695-atf-kak-obrazuetsya-energiya-v-organizme-cheloveka/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.